Boundary conditions at the derivative of a delta function

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 262265
(http://iopscience.iop.org/0305-4470/26/9/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:16

Please note that terms and conditions apply.

COMMENT

Boundary conditions at the derivative of a delta function

David J Griffiths
Department of Physics, Reed College, Portland, OR 97202, USA

Received 6 August 1992

Abstract

We derive the joining conditions on ψ at a point where the potential is the nth derivative of a Dirac delta function.

In a recent letter [1], Bao-Heng Zhao correctly states the joining conditions for the (timeindependent) Schrödinger equation, at a potential of the form

$$
\begin{equation*}
V(x)=c \delta^{\prime}(x) \tag{1}
\end{equation*}
$$

to wit \dagger

$$
\begin{align*}
& \Delta \psi=\frac{2 m c}{\hbar^{2}} \bar{\psi}(0) \tag{2}\\
& \Delta \psi^{\prime}=-\frac{2 m c}{\hbar^{2}} \bar{\psi}^{\prime}(0) \tag{3}
\end{align*}
$$

Zhao goes on, however, to, impose an incorrect and extraneous constraint \ddagger

$$
\begin{equation*}
\Delta \psi=0 \tag{4}
\end{equation*}
$$

\dagger Zhao sets $\hbar=1$ and $m=1 / 2$, and neglects to mention that the quantities on the right are the averages at the discontinuity.

$$
\bar{f}(0) \equiv \frac{1}{2}\left[f\left(0^{+}\right)+f\left(0^{-}\right)\right] .
$$

\ddagger Zhao sketches the derivation of (2) and (3), but in support of (4) merely remarks that 'as usual, we require ψ to be continuous at $x=0^{\prime}$. The interesting feature of the δ^{\prime} potential is precisely that ψ is not continuous. The reader who may be skeptical about this is encouraged to model $V(x)$ by the 'rectangular' function

$$
V_{i}(x) \equiv \begin{cases}0 & \text { if } x<-a \\ c / \epsilon^{2} & \text { if }-\epsilon<x<0 \\ -c / \epsilon^{2} & \text { if } 0<x<\epsilon \\ 0 & \text { if } x>\epsilon\end{cases}
$$

or (more simply) by the double delta function

$$
V_{2}(x) \equiv \frac{c}{2 \epsilon}[\delta(x+\epsilon)-\delta(x-\epsilon)]
$$

in the limit $\epsilon \rightarrow 0$.
which overdetermines the solution. Because this potential has been a source of recurring confusion (Zhao was himself responding to an error by Gesztesy and Holden in [2]), I thought it might be useful to present here a general derivation of the boundary conditions at the nth derivative of a delta function

$$
\begin{equation*}
V(x)=c \delta^{(n)}(x) \tag{5}
\end{equation*}
$$

The Schrödinger equation for this potential reads

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} \psi}{\mathrm{dx}}+c \delta^{(n)}(x) \psi=E \psi \tag{6}
\end{equation*}
$$

Integrating from $-\epsilon$ to $+\epsilon$

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m}\left[\psi^{\prime}(\epsilon)-\psi^{\prime}(-\epsilon)\right]+c \int_{-\epsilon}^{\epsilon}\left[\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{n} \delta(x)\right] \psi(x) \mathrm{d} x=E \int_{-\epsilon}^{\epsilon} \psi(x) \mathrm{d} x \tag{7}
\end{equation*}
$$

Using integration by parts n times, and noting that all the 'boundary' terms vanish, we find \dagger

$$
\begin{equation*}
\int_{-\epsilon}^{\epsilon}\left[\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{n} \delta(x)\right] \psi(x) \mathrm{d} x=(-1)^{n} \int_{-\epsilon}^{\epsilon} \delta(x)\left[\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{n} \psi(x)\right] \mathrm{d} x=(-1)^{n} \bar{\psi}^{(n)}(0) \tag{8}
\end{equation*}
$$

In the limit $\epsilon \rightarrow 0$, the last integral in (7) goes to zero, and we are left with the first boundary condition

$$
\begin{equation*}
\Delta \psi^{\prime}=(-1)^{n} \frac{2 m c}{\hbar^{2}} \bar{\psi}^{(n)}(0) \tag{9}
\end{equation*}
$$

Meanwhile, integrating the Schrödinger equation from $-L$ (with L positive) to x yields

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m}\left[\psi^{\prime}(x)-\psi^{\prime}(-L)\right]+c \int_{-L}^{x}\left[\left(\frac{\mathrm{~d}}{\mathrm{~d} x^{\prime}}\right)^{n} \delta\left(x^{\prime}\right)\right] \psi\left(x^{\prime}\right) \mathrm{d} x^{\prime}=E \int_{-L}^{x} \psi\left(x^{\prime}\right) \mathrm{d} x^{\prime} \tag{10}
\end{equation*}
$$

Again we integrate by parts, but this time the 'upper' boundary terms are not zero

$$
\begin{gather*}
\int_{-L}^{x}\left[\left(\frac{\mathrm{~d}}{\mathrm{~d} x^{\prime}}\right)^{n} \delta\left(x^{\prime}\right)\right] \psi\left(x^{\prime}\right) \mathrm{d} x^{\prime}=\delta^{(n-1)}(x) \psi(x)-\delta^{(n-2)}(x) \psi^{\prime}(x) \\
+\delta^{(n-3)}(x) \psi^{(2)}(x)-\cdots+(-1)^{n-1} \delta(x) \psi^{(n-1)}(x) \\
+(-1)^{n} \theta(x) \bar{\psi}^{(n)}(0) \tag{11}
\end{gather*}
$$

\dagger For functions $f(x)$ that are discontinuous at the origin, the expression

$$
\int_{-x}^{\epsilon} \delta(x) f(x) d x
$$

is not, in general, well-defined. However, if we stipulate that the delta function is the limit of a sequence of even functions, then

$$
\int_{-\infty}^{+} \delta(x) f(x) \mathrm{d} x=\bar{f}(0)
$$

and it is in this sense that $\delta(x)$ is to be interpreted throughout this paper.

Integrating (10) itself from $-\epsilon$ to $+\epsilon$, and taking the limit $\epsilon \rightarrow 0$, we find that

$$
\begin{gather*}
-\frac{\hbar^{2}}{2 m} \Delta \psi+c
\end{gather*}\left\{\int_{-\epsilon}^{\epsilon} \delta^{(n-1)} \psi \mathrm{d} x-\int_{-\epsilon}^{\epsilon} \delta^{(n-2)} \psi^{\prime} \mathrm{d} x+\int_{-\epsilon}^{\epsilon} \delta^{(n-3)} \psi^{(2)} \mathrm{d} x\right] \text {. }
$$

A final set of integrations by parts reduces the term in curly brackets to

$$
(-1)^{n-1} n \bar{\psi}^{(n-1)}(0)
$$

and we are left with the second boundary condition

$$
\begin{equation*}
\Delta \psi=(-1)^{n-1} \frac{2 m c}{\hbar^{2}} n \bar{\psi}^{(n-1)}(0) \tag{13}
\end{equation*}
$$

For example, at a simple delta function ($n=0$), equations (9) and (13) yield the familiar conditions

$$
\Delta \psi=0 \quad \Delta \psi^{\prime}=\frac{2 m c}{\hbar^{2}} \psi(0)
$$

and for the (first) derivative of a delta function ($n=1$) we recover equations (2) and (3).

References

[1] Zhao B H 1992 J. Phys. A: Math. Gen. 25 L617
[2] Gesztesy F and Holden H 1987 J. Phys. A: Math. Gen. 205157

