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COMMENT 

Boundary conditions at the derivative of a delta function 

David 3 Griffiihs 
Department of Physics, Reed College, Portland, OR 97202. USA 

Received 6 August 1992 

Abstract. We derive the joining conditions on @ at a point where the potential is the nth 
derivative of a Dirac delta function. 

In a recent letter [I], Bao-Heng Zhao correctly states the joining conditions for the (time- 
independent) Schrodinger equation, at a potential of the form 

- 

V ( x )  = cS'(x) (1) 

to witt 

2mc - 
A@' = --@'(O). 

h2 

Zhao goes on, however, to, impose an incorrect and extraneous constraint$ 

A @ = O  (4) 

t Zhao sets i3 = 1 and m = 112. and neglects to mention that the quantities on the right are the averages at the 
diswntinuity 

1 
P(0) = p+, + f(O71 

$ Zhao sketches the derivation of (2) and (3), but in support of (4) merely remarks that 'as usual, we require @ 
to be wntinuous at x = 0'. The interesting feature of the 8' potential is precisely that @ is MI continuous. The 
reader who may be skepticill about this is encowaged lo model V ( x )  by the 'rectangular' function 

(0 i f x c - a  
if --E c x  < 0 
if o < x < E 

vi (X) E 
-C/G~ 

i f x > t  

or (more simply) by the double delta function 

C 
V2(r)  = -[S(x + -E) - 6 ( X  - E ) ]  

26 

in the limit -E -+ 0. 
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which overdetermines the solution. Because this potential~has been a source of recurring 
confusion (Zhao was himself responding to an error by Gesztesy and Holden in [Z]), I 
thought it might be useful to present here a general derivation of the boundary conditions 
at the nth derivative of a delta function 

V ( x )  = CP(X). (5) 

The Schrodinger equation for-this potential reads 

+ CSl"'(X) $ = E$. hZ dzq  
2m dx2 

Integrating from -6 to +E 

Using integration by parts n times, and noting that all the 'boundary' terms vanish, we findt 

In the limit E + 0, the last integral in (7) goes to zero, and we are left with the first 
boundary condition 

2mc - 
Fiz 

A$' = (-l)"-~(")(O). 

Meanwhile, integrating the Schrodinger equation from -L (with L positive) to x yields 

Again we integrate by parts, but this time the 'upper' boundary terms are not zero 

+ s ' " - " ( x ) p ( x )  - . . . + (-l)"-'S(x)$'"-t'(x) 

+ (- 1 ) n e ( ~ ) p n l  (0). 

t For functions f (x) that are discontinuous at the origin, the expression 

is not. in general, well-defined. However, if we stipulate that the delta function is the limit of a sequence of even 
functions. fhen 

J_: W f  ( X ) d r  = ice, 

and it is in this sense that b ( x )  is to be interpreted throughout this paper. 
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Integrating (10) itself from --E to +E, and taking the limit E + 0, we find that 

A final set of integrations by parts reduces the term in curly brackets to 

(-ly-ln$ln-l)(o) 

and we are left with the second boundary condition 

For example, at a simple delta function (n = 0), equations (9) and (13) yield the familiar 
conditions 

2mC 
A @  = 0 A@' = ~ @ ( 0 )  

and for the (first) derivative of a delta function (n = 1) we recover equations (2) and (3). 
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